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RELAXATION METHOD OF IMPULSE DECONVOLUTION
IN AN OPTICAL CORRELATOR

Richard D, Juday

ABSTRACT

A method is proposed that is intended to compensate simul-
taneously for poorly-known diffraction patterns and imperfect
elements in an optical correlator system that uses a programmable
filter. One seeks a static (or otherwise easily calculated)
correction for disturbances that are peculiar to a given optical
éorrelator and are, hence, not modelable a priori. The technigue
relaxes an initiai guess at a matching filter for an impulse in
the input plane, in order to find filters that yield progressive-
ly more localized patterns in the correlation plane.ldneééity
and shift inQariance of the system (or discovered departures from
them) then allow construction of the matched filter for an arbi-
trary reference pattern. The technique is expected to be robust
in the sense of having a very large capture radius and being
insensitive to the form of an initial approximation to the opti-
mal filter. The method applies to both continuous and discrete,

and also to both real and complex, filters,




DRAFT, 1-31-1986, version b

I. INTRODUCTION

In coherent optical correlators using spatial light modula-

tors, the input image causes a modulation of the coherent reading
wavefront (see Figure 1). The diffraction disturbance to the
reading wavefront depends locally on the physics and the spatial
configuration of the device, as well as depending globally on the
pattern written onto the device. A filter is placed at the focal
plane of the optical Fourier transform lens, In classical matched
filtering, the filter has an effect equal to the complex conju-
gate of the Fourier transform of a reference object whose cor-
relation with the input scene addressing the modulator is
desired. The complex conjugate comprises two parameters, phase
and amplitude. However, a one-parameter combination of phase and
amplitude is all that can be introduced with such devices as the
Litton magneto-optic device (MOD), Hughes' liguid crystal light
valve (LCLV), the Texas Instruments deformable mirror device
(DMD), etc. The MOD and the LCLV principally modulate amplitude;
the DMD, principally phase. The challenge is to optimize a filter
within the constraint of controlling only the one-parameter com-
bination of phase and amplitude,

Modeling of phase-only filters (POF) has not yet addressed the
diffraction pattern of the reading-plane pixel, nor the physical-
ly limited means of producing a desired phase modulation at the
filter plane, nor the expected high sensitivity of the POF cor-
relator to phase deviations of the order introduced by real

(11

optics. Horner and Gianino indicate a scheme which will use

an iterative technique to optimize a POF derived from a classical
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matched filter, but the details have not been published. In this
paper there is presented an iterative, adaptive filter-optimizing

method that is independent of the starting filter and conforms to

the control constraints.
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ITI. SOME PRACTICAL DIFFICULTIES IN OPTICAL CORRELATORS

The pattern brought to the filter plane of even a linear
space-invariant optical correlator system is not exactly the
Fourier transform of the original input image, but instead is the
image's convolution with the system's transform of the diffrac-
tion pattern of a single pixel in the reading plane, Imperfec-
tions existing in any physical optical system interfere with the
purity of the optical Fourier transform. These include non-
planarity of surfaces, scattering centers such as dust or inclu-
sions, and imperfect optical alignment. It takes little imperfec-
tion in a high-index transmitting element to cause appreciable
departure in phase from what perfect optics would have given.
Altogether, the filter plane may be presented with a complex
wavefront differing significantly from the Fourier transform of
the original input image. If the input image is the desired
reference object, the one-parameter spatial light modulator (SLM)
is asked to match both phase and amplitude of the arriving wave-
front, so as to produce a bright spot in the correlation plane
(after passage through subsequent imperfect optics). This will
likely be difficult, particularly for phase-only filtering,
since the difference from perfect Fourier transform behavior
induced by, for example, a two-wave-flat beamsplitting cube will
be far more significant in phase than in amplitude. Furthermore,
the physical configuration of the filter may not fit the shape of
the transformed input (particularly under the constraints of one-
parameter control) even if that were known exactly. Modeling of

phase-only matched filtering 2,31 shows that the POF has the
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possibility of producing verY sharp correlation peaks; concomi-
tantly one expects that the POF will be very sensitive to phase
errors in the filter (which would arise as uncertainty in the
diffraction pattern of an individual reading-plane pixel or as
non-uniformity of phase propagation by the physical optical sys-
tem) .

An amplitude-only filter (AOF) produces broader correlations
than the POF [3]; the hypothetical two-wave-flat beamsplitter
affects the transformed wavefront's amplitude less strongly than
its phase; and measurements of amplitude (intensity) at the
filtration plane are easier than measurements of phase. Con-
sequently, producing an optimized filter is expected to be more
difficult for the POF than for the AOF. However, the promise of
the POF's strong signal-to-noise ratio justifies an attempt to
realize its potential, and the easier AOF can also benefit from

the method.
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IIT. THE METHOD OF RELAXATION BY GRADIENT SEARCH

A method of finding the optimal filter in a physical system
has been devised. It will allow investigating the departures of
the correlator system from the desirable qualities of linearity
(superposition) and shift invariance. The method is similar to
adaptive telescope optics in performing adjustments on the filter
to produce the sharpest spot in the correlation plane, even as
adaptive telescope optics sharpens a star's image. Adaptive tele-
scope optics adjusts comparatively few parameters at a high rate,
to accommodate temporal instabilities; the adaptive relaxed fil-
ter adjusts many parameters once and assumes temporal stability.

The technique is a gradient search among all possible varia-
tions from the initial guess at a proper filter. We need two
tools: the scalar whose value is to be maximized, and a complete
and appropriate space in which to take the gradient of the
scalar. The more accurate the starting filter, the more rapid is
convergence to the optimal filter, though the method is designed
to have a final result that is independent of the exact form of
the starting filter. -

For an exhaustive search in a space of high dimension, one
requires a rapidly calculable metric for the sharpness, S . The
metric must avoid capture by false (local) maxima. To meet these
goals, a sequence of sharpness measures is enyisiohed with the
measure at any one time tailored to the characteristics of the
current pattern., The sequence begins with a low spatial resolu-
tion and proceeds to higher and higher resolution. The ideal

final measure is the intensity of light at the one pixel in the
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correlation plane which corresponds to the location of an input
plane impulse. If the light is initially distributed over all the
correlation plane, starting with such a sharp metric almost
guarantees being caught by a local maximum. The technique pro-
posed here is to sum the light within regions of progressively
diminishing size; by analogy, if one has a given volume of sand
scattered on a plane, the tallest pile of sand is most economi~
cally constructed by beginning inward radial sweeping at the
edges (rather than at intermediate radii) and by steadily redu-
cing the radius at which one sweeps. The succeeding radius in a
sequence could be, for example, a fixed fraction of the radius of
gyration of the present intensity pattern, and we would take the
metric of sharpness, S, to be tﬂe amount of light inside the
current value of the sensing radius.

We can apply the method to both discrete and continuous-valued
filters with only slightly different procedures, Let us first
examine the continuous filter,

Having determined a metric of sharpness as the scalar to be
maximized, we need the space in which we will calculate sharpness
as a function of position, fhe space of Hadamard coefficients is
appropriate., Brief mention of certain qualities of the Hadamard
basis is appropriate. We follow Pratt [4] in this development,

The Hadamard transform is based on the Hadamard matrix, a
square array of plus and minus ones whose rows and columns are
orthogonal. There are N2 orthogonal matrices that are N on a
side, so they are complete with respect to representingany NxN

pattern., The matrices are used as the basis with which to repre-
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sent a square array of numbers -- in the present case, the con-
trol values applied to the spatial light modulator. (If we were
controlling both phase and amplitude at each grid location in the
SLM we would have complex coefficients for the Hadamard basis
planes, and without loss of generality we can continue using real
scalars for the coefficients.) The Hadamard basis can be normal-~
ized‘by a single multiplicative scalar for each matrix. The two-
dimensional matrices can each be expressed as the product of two
one-dimensional functions, with important ramifications for eéon—
omy of generation of the basis planes. The set of N2 2-D basis
planes is generated by the outer product of pairs drawn from the
N 1-D functions., The 1-D functions can be arranged in order of
sequency (the number of sign changes in the function; sequency is
closely related to spatial frequency), and so the 2-D basis
planes can be ordered in two dimensions of sequency. The N x N
Hadamard basis is easily calculated where N is an integer power
of 2, a very handy property in light of the fact that most
spatial light modulators come in arrays that are powers of 2 on a
side. The orthogonality of the Hadamard matrices leads easily to
the representation of a given 2-D array by the Hadamard coef-
ficients., If we desire to représent t(j,k) by the set of coef-

ficients (which is the same as the transform of the array)

Ay, v

the orthonormality of Hu'v(j,k) easily yields

N-1 N-1

£,k = 3T 3 ay,y Hy, (k) (1)

u=0 v=0

where
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N-1 N-1

Ay, v = jio k:>=_0t(3,k) Hy, y(3rk) (2)

Pratt (4] gives another method that operates on the bit patterns
of the transform coordinates; letting t(j,k) be the one-parame-
ter control applied as the filter, its Hadamard transform,

T(u,v), is efficiently calculated by:

N-1 N-1
T,V = 3 3 t(j,k (-1)9¢Irkeu,v) (3)
j=0 k=0
where
N-1
g(j,k,u,v) = 'ZO [gj(u)j; + gi(v)ki] (4)
1=
and
go(u) = Upailr
gy{u) = uyy + up-2os
gs(u) = uq_y + up-3; (5)

5 fw = ug + g

and ujy is the state of the,ith bit in the binary representation
of u. For example, if u=13, then uz=l, uy=1l, uj;=0, and upg=1.
Logical bit operations in computation machinery make this an
efficient and fast method of representing the filter.

The transform T(u,v) of a filter can be regarded as the
components of a vector of length N2 by column- or row-scanning
T(u,v). Define w := Nu+v; the relationship is invertible since
u and v both run from 0 to (N-1). The transform T(u,v) scahs

into a vector F(w) by F(w) := T(u,v). The Hadamard basis being
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complete for arrays N x N, then F 1is able to represent any
filter in dimension N2, Since F gives T(u,v) which in turn gives
the filter, the information in F is the same as the information
in the filter itself. We search on values of F for the one
giving the sharpest output in the correlation plane of the opti-
cal correlator.

We begin by placing an impulse at a single location in the
input plane and making an estimate of its matched filter (AOF,
POF, or other as appropriate). Next we represent the filter with
respect to the Hadamard transform basis functions. Then the
sharpness S is obtained for tﬂat vector, and the components of
F are adjusted to maximize S ., Beyond the usual properties of
having row and column orthogonality and being complete, the
Hadamard basis offers the advantage that the magnitude of each
element is the same. As any component of F 1is adjusted, every
pixel in the filter is affected with the same magnitude; the
visibility of the effect will be larger than if one or only a few
filter pixels were changed. The possible drawback of the high
sensitivity to.change of each coefficient is that the simple
gradient search outlined here might have to be supplemented by an
interpolétion scheme., We need a hill-climbing algorithm and will
outline one such to find the largest value of S .

Let F = (Ei) be the vector of Hadamard coefficients. Let Sj[E]

be the jth measure of sharpness; let S; be the total amount of
blight recorded at the correlation plane, and let Sj converge

toward S*, the amount of light recorded at only a single central

pixel.
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THE ALGORITHM

For j in its domain do the following:
For i in its domain do the following:
Using suitable small values of & and F find the maxi-
mum of Sj[_E] on the itM axis as follows.
Estimate the itP component V7isj[£] of grad(s;) by
A
ViSj [F] = _.f.j..[_g.t.e..lli_]__.-_..S_j_[.r.'.].-__ (6)
in which ,}\1]-_ is the unit vector along the ith axis in
the N2-dimension space of Hadamard coefficients.
Replace F with (F +(5?‘i Visj[g]). Repeat until the
maximum is found; there i7isj[£] = 0,
Repeat through all values of i.
If the sharpness Sj[gl increases as a result of an i-loop
manipulation, repeat the i-loop with that value of i.
Here we have maximized sharpness for the jth measure Sj;
further manipulations on i do not increase Sj. Thus we repeat
with the next measure of sharpness until we have used all
values of j. Let the final value of F be designated E+. Re-
peated cycling throuéh the diminishing radii will have the
effect of peristaltically moving light energy into the central
correlation spot.
We have not shown that F necessarily converges to _E*, which of
all possible values of F maximizes S*. Indeed, given the sharp-

ness and noisiness shown in the modeling of Horner and

Gianino[3], one can imagine that even gtarting with E*,

11
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proceeding to use the sequence of Sj's as above would lead to a

value E+ such that S*[E+] < s*[g*]. However, we are certainly no
worse off for the effort; if we find that S*[£+] < S*[EIJ, with
E; the starting filter, we can always use E;.

The sizes of € and {2 will depend on various considerations
related to convergence, sensitivity, and physical limitations.
The correlation peak may not be detected, depending on € and(% ’
as the light is swept toward the desired center., The size of €
is chosen small enough to avoid stepping beyond a nearby maximum
but large enough to give a significant change in S , which
allows estimation of the gradient component. € and P are also
chosen within limitations imposed by the physical nature of the
SLM; there are maximum and minimum activations for each pixel.
Adaptations of the procedure will have to be made for individual
instances. As an example, if there is a substantial DC term in
the transform plane due to a significant proportion of inactive
area on the input SLM, then the sharpness measure could be taken
as the difference between the correlation plane patterns with the
impulse at the input plane and its current estimated filter both
on and both off. The differencing decreases the effect of the
unchanging large-amplitude portion of the signal.

Now we turn to the discrete filter. The binary phase-only
filter (BPOF) will serve as an example. If it were possible to
represent an arbitrary N x N pattern of plus and minus ones as,
say, the element-wise product of a subset of the Hadamard matri-
ces, then the analog of the gradient search outlined above could
be a search for the minimal subset of the Hadamard matrices to

multiply element-wise for the optimum filter. Advantage of the

12



DRAFT, 1-31-1986, version b

binarization would be taken in there possibly being fewer than N2
parameters required to represent a filter. Unfortunately it is
not generally possible to do such a product representation. The
BPOF can, however, be regarded as simply a thresholded continuous
filter., The value of the threshold is one more parameter in the
representation of a filter by the Hadamard coefficients, and it
thus it is one more coordinate for the gradient search. The
principles are otherwise as stated above, though it is recognized
that since there is a many-to-one aspect to this representation
of a binary filter, there will be areas of apparently zero gra-
dient in the search.

However, there is presumably a "best" BPOF. The Hadamard basis
is exhaustive in representing patterns (including binary ones and
hence the best BPOF). Given a continuous filter and a binariza-
tion threshold that together give exactly the best BPOF, there
will be a more or less graceful degradation from the best BPOF as
the N2+1 parameters are altered. One hopes that the inverse
operation would work -- that convergence to the best BPOF would
ensue,

This is more an "existence" argument than a recipe; the limi-
tation to binary values should admit of a computationally econom-
ic representation for gradient search, and research into such
economic representation will continue.

The extension to ternary filters is done by the extension to
two thresholds versus one, and so forth for any number of levels

in a discrete filter.
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IV. LINEARITY, SHIFT-INVARIANCE, AND ARBITRARY REFERENCE IMAGES

Once the optimal filter F* has been found for an impulse at
one location in the input plane, the putative linearity and shift
invariance of the optical Fourier transform are examined. We hope
for linearity in the sense of proportional response in the
strength of the impulse, and shift invariance in the sense of the
usual phase effect from a shift of origin in the Fourier trans-
form. A truly linear system will also show superposition; the
optimum filter pattern for pairs of impulses would be the sum of
their individual filters. Assuming such qualities leads to star-
ting filters for different locations of the input impulse, etc.
One would expect that the search for the optimal filter of the
shifted impulse would be less strenuous than finding the original
impulse's filter; the technique is the same but the starting
point should be nearer the final value. Consistent departures
from the shift invariance, as due to to imperfect optics, are
sought and modeled. Similar comments apply for examinations of
linearity (proportionality) and superposition.

If linearity, shift invariance, and superposition hold (or if
departure from them is tractable), then an arbitrary reference
image can have its matched filter created from the filters for
the impulses that sum to the arbitrary input image. One hopes to
find static -- or at least easily computed -- corrections to the
transform of an arbitrary reference image. Otherwise, the system
would be trained by the relaxation technique to recognize each
new reference image. There is an obvious preference for the

former,

14
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The technique is a quite general one, applicable to any sort
of rapidly programmable filter, Rapid programmability is a re-
quirement if the method is not to get out of hand, but if the
procedure is automated and done efficiently it will not neces-
sarily be too time-consuming. For example, at the 30Hz which is
not an unreasonable speed for reading new patterns into a filter,
it takes just over nine minutes to count through the 16K Hadamard
patterns required to represent a 128 x 128 filter. The technique
will be tested on an optical correlator system being developed
for NASA's Johnson Space Center by Texas Instruments. The Texas
Instruments DMD will be used for both the reading plane and the

filter plane in the correlator. Results will be reported later.

15
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Figure 1. An optical correlator laid out in simplified all-
transmitting form., The coherent wave E; becomes E, after reading
the information impressed on the spatial 1light modulator SLM;.
Lens Lj transforms E, to E3z at the filtering SLM). Passage
through SLM, results in E4 which is transformed by L, to Eg at
the imaging detector D. A pattern put in at SLMj is "matched" by
the pattern on SLM, that produces the most localized and centered

pattern at D,



